Search results for "Covariance and correlation"

showing 2 items of 2 documents

The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies

2003

We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …

Statistics and ProbabilityCovariance functionaffine equivarianceinfluence functionMultivariate normal distributionrobustnessComputer Science::Human-Computer InteractionEfficiencyestimatorsEstimation of covariance matricesScatter matrixStatisticsAffine equivarianceApplied mathematicsCMA-ESMultivariate signCovariance and correlation matricesRobustnessmultivariate medianMathematicsprincipal componentsInfluence functionNumerical AnalysisMultivariate medianCovariance matrixcovariance and correlation matricesdiscriminant-analysisCovarianceComputer Science::Otherdispersion matricesefficiencyLaw of total covariancemultivariate locationtestsStatistics Probability and Uncertaintyeigenvectors and eigenvaluesEigenvectors and eigenvaluesmultivariate signJournal of Multivariate Analysis
researchProduct

Covariance and correlation estimators in bipartite complex systems with a double heterogeneity

2019

Complex bipartite systems are studied in Biology, Physics, Economics, and Social Sciences, and they can suitably be described as bipartite networks. The heterogeneity of elements in those systems makes it very difficult to perform a statistical analysis of similarity starting from empirical data. Though binary Pearson's correlation coefficient has proved effective to investigate the similarity structure of some real-world bipartite networks, here we show that both the usual sample covariance and correlation coefficient are affected by a bias, which is due to the aforementioned heterogeneity. Such a bias affects real bipartite systems, and, for example, we report its effects on empirical dat…

Statistics and ProbabilityRandom graphComputer scienceComplex systemEstimatorStatistical and Nonlinear Physicsdata miningCombinatoricssocio-economic networksnetworkBipartite graphCovariance and correlationStatistics Probability and Uncertaintyrandom graph
researchProduct